Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 116: 111175, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806235

ABSTRACT

Hybrid materials, based on bacterial cellulose (BC) and hydroxyapatite (HA), have been investigated for guided bone regeneration (GBR). However, for some GBR, degradability in the physiological environment is an essential requirement. The present study aimed to explore the use of oxidized bacterial cellulose (OxBC) membranes, associated with strontium apatite, for GBR applications. BC membranes were produced by fermentation and purified, before oxidizing and mineralizing by immersing in strontium chloride solution and sodium bibasic phosphate for 5 cycles. The hybrid materials (BC/HA/Sr, BC/SrAp, OxBC/HA/Sr and OxBC/SrAp) were characterized for biodegradability and bioactivity and for their physicochemical and morphological properties. In vitro cytotoxicity and hemolytic properties of the materials were also investigated. In vivo biocompatibility was analyzed by performing histopathological evaluation at 1, 3 and 9 weeks in mices. Results showed that the samples presented different strontium release profiles and that oxidation enhances degradation under physiological conditions. All the hybrid materials were bioactive. Cell viability assay indicated that the materials are non-cytotoxic and in vivo studies showed low inflammatory response and increased connective tissue repair, as well as degradation in most of the materials, especially the oxidized membranes. This study confirms the potential use of bacterial cellulose-derived hybrid membranes for GBR.


Subject(s)
Biocompatible Materials , Cellulose , Animals , Biocompatible Materials/pharmacology , Bone Regeneration , Durapatite , Membranes, Artificial , Mice , Strontium
2.
Carbohydr Polym ; 237: 116174, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32241452

ABSTRACT

Hydroxyapatite-associated bacterial cellulose (BC/HA) is a promising composite for biomedical applications. However, this hybrid composite has some limitations due to its low in vivo degradability. The objective of this work was to oxidize BC and BC/HA composites for different time periods to produce 2,3 dialdehyde cellulose (DAC). The BC and oxidized BC (OxBC) membranes were mineralized to obtain the hybrid materials (BC/HA and OxBC/HA) and their physico-chemical, degradability, and bioactivity properties were studied. The results showed that OxBC/HA was more bioactive and degradable than BC/HA, which isa function of the degree of BC oxidation. High glucose levels in the BC degradation were observed as a function of oxidation degree, and other products, such as butyric acid and acetic acid resulted from DAC degradation. Therefore, this chemical modification reaction favors BC degradation, making it a good biodegradable and bioactive material with a potential for bone regeneration applications.


Subject(s)
Cellulose/chemistry , Durapatite/chemistry , Acetic Acid/chemistry , Acetobacteraceae , Body Fluids/chemistry , Bone Regeneration , Butyric Acid/chemistry , Glucose/chemistry , Oxidation-Reduction , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...